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Quantum mechanical calculations for all fluorochloro-derivatives of ethane were
performed. It was shown that the B3LYP/cc-pVDZ density functional method
and single-point MP2/cc-pVTZ calculations lead to an accuracy of the molecu-
lar data that is sufficient for prediction of ideal gas heat capacities. Finally,
reliable experimental heat capacity data reveal that an uncertainty of the heat
capacity calculations of ±1.5% or less is achieved.
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1. INTRODUCTION

It was pointed out in Refs. 1 and 2 that the combination of quantum
mechanical calculations and statistical thermodynamics [3] provides a
suitable path for the prediction of molecular properties and heat capacities.
Only fundamental physical constants and the structural formula enter into
the calculations. From the results obtained for all fluorochloro-derivatives
of methane, it was concluded [2] that the B3LYP density functional
method [4] with the cc-pVDZ basis set [5] is a rational route to the ideal
gas heat capacity of the halocarbons investigated so far. Here we present
the results we obtained from this method for the fluorochloro-derivatives
of ethane.



2. IDEAL GAS HEAT CAPACITY OF ETHANE AND ITS
DERIVATIVES

An N-atomic molecule possesses 3N degrees of freedom of motion. In
the rigid rotator-harmonic oscillator approximation (RRHO) [3], the
different modes of motion are independent of each other. For a nonlinear
molecule three degrees of freedom are related to translation and three to
external rotation. The remaining 3N−6 internal modes are vibrations. For
methane-like molecules all of these modes may be treated as harmonic
oscillations. But for ethane and its derivatives, special attention has to be
given to the particular mode of torsion. At low temperatures the atomic
groups attached to the two carbon atoms oscillate around the connecting
carbon–carbon axis at a low amplitude. If the temperature is increased, this
oscillation changes into an internal rotation of the groups, which is affected
by intramolecular forces, i.e., a hindered internal rotation occurs. In the
limit of very high temperatures, which is equivalent to weak intramolecular
forces, interactions become of less importance until a free internal rotation
occurs.

Independent modes of motion lead to a heat capacity,

c igp=R+c
ig
tr+c

ig
rot+c

ig
vib+c

ig
irot (1)

where R denotes the molar gas constant and c igtr=c
ig
rot=

3
2R are the constant

contributions of translation and external rotation. The temperature
dependence and characteristics of the individual molecules are included in
the contributions of the internal modes of motion. Evaluation of the
vibrational part to the heat capacity c igvib is reduced to (3N−6)−1 normal
modes, because now the torsional mode is treated separately in the contri-
bution of hindered internal rotation c igirot. The contribution of hindered
internal rotation

c igirot=f(T, Vir(j), Ired) (2)

has to be computed by solving the Schrödinger equation numerically or by
means of tabulated values [3]. Only two limiting cases enable direct cal-
culation. The first is the low-temperature case, where small oscillations
occur, and the contribution may be evaluated from the vibrational formula.
On the other hand, at high temperatures the limit of free internal rotation
will be approached, which is c igirot, free=

1
2R. In the intermediate region the

contribution of hindered internal rotation may exceed 1R, which is the
maximum contribution of one vibration. The magnitude of c igirot strongly
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depends on the intramolecular energy Vir(j), which is usually expressed as
a Fourier-series expansion,

Vir(j)=
1
2 C
6

n
Vn[1− cos(nj)] (3)

where j is the torsional angle of the connecting CC-axis and Vn are the
potential coefficients of the series expansion. The latter can be obtained
from spectroscopy or from quantum mechanical calculations. Here we use
quantum mechanics to eliminate any need for spectroscopic data.

To predict the heat capacity, the reduced moment of inertia of internal
rotation Ired is required. If both rotating groups attached to each other
show threefold symmetry, the reduced moment of inertia is easily cal-
culated from the moments of inertia I1, I2 of the groups 1 and 2 with
respect to the rotational axis [3],

Ired=
I1I2
I1+I2

(4)

If at least one rotational group shows threefold symmetry, the reduced
moment is expressed as

Ired=I1 51−I11
cos2 a
IA
+

cos2 b
IB
+

cos2 c
IC
26 (5)

with I1 being the moment of the symmetrical group, IA, IB, and IC the
principal moments of inertia, and a, b, and c the angles between the prin-
cipal moments and the rotational axis [3].

3. RESULTS

For the series of the fluorochloro-derivatives of ethane, 55 constituent
isomers exist. Some of them possess two, and some three isomers, which
result from a rotation around the CC axis, i.e., rotational isomers, and, for
one, even five rotational isomers. The latter is the chiral molecule 1,2-
dichloro-1,2-difluoroethane. Therefore, a total of 92 isomers exists for the
series of ethane. B3LYP/cc-pVDZ [4, 5] calculations were performed for
all isomers using GAUSSIAN98 [6]. In the following we present the
results only for those molecules for which experimental zero-pressure heat
capacity data are available in the literature. The reader who is interested in
the results for the other molecules is referred to Ref. 7. The results of
molecular structure are given in Table I. The last column in Table I con-
tains the reduced moment of inertia calculated from Eq. (5) for molecules
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possessing at least one threefold symmetrical group. For molecules having
two asymmetrical rotational groups, the reduced moment of inertia was
approximated by Eq. (4) and calculated individually for each rotational
conformation. The value for the molecule was taken as the mean value of
the rotational isomers according to the statistical weight of the isomers.
The contributions were then calculated numerically [3]. Although this
seems to be a rough approximation, good prediction of the heat capacity is
achieved, as will be seen later.

In Table II the vibrational frequencies obtained from the B3LYP/cc-
pVDZ method are given. No comparison is made to observed fundamen-
tals from the literature, since assignments were proven to be erroneous to
some extent in an earlier paper [8]. For the vibrational contribution to the
heat capacity of the molecules possessing different rotational isomers,
a mean value was taken according to their statistical weight.

To obtain the intramolecular potential energy of hindered internal
rotation, we performed single-point B3LYP/cc-pVDZ calculations with the
molecular geometry from Table I while varying the torsional angle of the
CC axis. In the same way we performed MP2/cc-pVTZ calculations for the
energy differences of the rotational isomers. As can be seen from Table III,

Table II. Calculated Vibrational Frequencies (cm −1)

C 2H 6 CH 3–CHF2 CH 3–CF3 CH 3–CF2Cl CH 3–CFCl2 CF3–CH 2F

A1g 3028 AŒ 3141 A1 3069 AŒ 3150 AŒ 3168 AŒ 3059
1410 3054 1417 3062 3059 1462
1011 3050 1284 1450 1448 1435

A2u 3026 1455 827 1400 1393 1300
1386 1420 593 1240 1129 1185

Eg 3082 1370 E 3161 1120 1118 1111
1474 1151 1453 896 935 837
1204 1141 1238 662 577 654

Eu 3107 872 966 538 426 540
1477 562 532 417 371 404
821 461 358 300 254 211

Aœ 3139 Aœ 3170 Aœ 3144 Aœ 3120
A1u 317a 1458 A2 222a 1449 1448 1304

1374 1213 1093 1192
1147 970 716 970
947 423 389 523
376 326 293 345

237a 242a 269a 96a
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Table II. (Continued)

CF3–CH 2Cl CF3–CHF2 CF3–CHClF CF3–CHCl2 CF3–CClF2

AŒ 3103 AŒ 3085 A 3115 AŒ 3146 AŒ 1345
1441 1434 1383 1325 1234
1338 1310 1299 1281 1126
1270 1196 1280 1145 957
1157 1137 1218 866 749
849 860 1162 755 640
785 713 1118 663 545
630 571 871 518 426
529 514 801 372 357
350 356 687 257 309
181 236 564 207 178

Aœ 3172 Aœ 1363 521 Aœ 1220 Aœ 1251
1298 1222 442 1196 1199
1105 1147 369 806 585
900 574 314 548 443
526 407 231 348 323
345 202 182 181 210

93a 60a 65a 66a 55a

CF2Cl-CHClF

CF2Cl-CF2Cl CF2Cl-CFCl2 Ap +sc −ac

Ag 1280 A 1274 AŒ 1214 A 1221 A 3123 3122 3100
1027 1193 1107 1204 1358 1354 1355
696 1027 1025 1139 1269 1270 1270
425 668 865 1029 1252 1248 1191
353 484 624 874 1175 1148 1171
248 427 496 786 1123 1100 1126

Au 1215 321 427 649 967 977 1055
367 304 365 524 790 829 829
215 165 301 448 764 790 646

Bg 1203 B 1202 247 428 619 591 622
533 1120 164 385 472 443 490
315 893 Aœ 1186 345 420 418 422

Bu 1144 614 868 309 384 399 418
814 435 446 283 337 321 329
601 395 374 237 259 305 305
423 303 304 196 233 224 196
163 198 176 161 167 163 168

Au 53a A 63a 68a 65a 63a 69a 69a

a Torsional mode.
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Table III. Relative Energy Differences and Potential Coefficients (kcal ·mol −1)

Molecule Method DEap–ac=V3 DEap–"30°" V6

C 2H 6 MP2/cc-pVTZ 2.91 1.46 0.005
B3LYP/cc-pVDZ 2.93 — —

CH 3–CHF2 MP2/cc-pVTZ 3.35 1.54 −0.135
B3LYP/cc-pVDZ 3.20 — —

CH 3–CF3 MP2/cc-pVTZ 3.27 1.63 −0.005
B3LYP/cc-pVDZ 2.90 — —

CH 3–CClF2 MP2/cc-pVTZ 3.89 1.86 −0.085
B3LYP/cc-pVDZ 3.50 — —

CH 3–CCl2F MP2/cc-pVTZ 4.68 2.11 −0.230
B3LYP/cc-pVDZ 4.27 — —

CF3–CH 2F MP2/cc-pVTZ 4.00 1.99 −0.010
B3LYP/cc-pVDZ 3.05 — —

CF3–CH 2Cl MP2/cc-pVTZ 4.55 2.33 0.055
B3LYP/cc-pVDZ 3.61 — —

CF3–CHF2 MP2/cc-pVTZ 3.85 1.77 −0.155
B3LYP/cc-pVDZ 2.43 — —

CF3–CHClF MP2/cc-pVTZ 4.92 2.48 0.020
B3LYP/cc-pVDZ 3.42 — —

CF3–CClF2 MP2/cc-pVTZ 5.37 2.70 0.019
B3LYP/cc-pVDZ 3.39 — —

CF3–CHCl2 MP2/cc-pVTZ 6.00 2.63 −0.370
B3LYP/cc-pVDZ 4.46 — —

the relative energy differences between staggered and eclipsed conforma-
tions calculated from the B3LYP/cc-pVDZ method are lower than the
corresponding MP2/cc-pVTZ values except for C 2H 6. For the molecules
possessing at least three atoms of the same kind attached to one carbon
atom, we also calculated the relative energy difference between the eclipsed
conformation and a rotation of 30° around the CC axis. This leads to the
V6 coefficient of the series expansion affecting the shape of the potential
energy of internal rotation in the intermediate region between staggered
and eclipsed conformations.

The relative energy differences of the molecules possessing two
asymmetrical rotational groups are presented in Table IV. The coefficients
Vn of the series expansion of the potential energy [cf. Eq. (4)], were
obtained from a fit to these relative energy differences and are given in
Table V. An exact reproduction of the relative energy differences from this
representation was achieved for R114. For R113 and R123a, the maximum
deviation of 1 kJ ·mol −1 between the calculated relative energy differences
and the series expansion is observed for R113 and is considered negligible
relative to the largest value of 38.66 kJ ·mol −1 and the approximation of
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Table IV. Relative Energy Differences of the Molecules Possessing Two Asymmetrical
Rotational Groups (kcal ·mol −1)

Molecule Method DEap DE+ac/DE−ac DE+sc/DE−sc DEsp

CClF2–CHClF MP2/cc-pVTZ 0.13 5.91/5.90 0.36/0.00 7.06
B3LYP/cc-pVDZ 0.00 4.37/4.17 0.67/0.20 6.05

CClF2–CClF2 MP2/cc-pVTZ 0.00 6.67 0.37 7.71
B3LYP/cc-pVDZ 0.00 4.51 0.63 6.50

CClF2–CCl2F MP2/cc-pVTZ 0.26 9.24 0.00 7.91
B3LYP/cc-pVDZ 0.72 7.47 0.00 5.44

the reduced moment of inertia. Moreover, the shape of the potential energy
in the intermediate regions between these conformations was also con-
sidered to be negligible for the same reasons.

In the following we compare our calculated results to experimental
heat capacity data extrapolated to zero pressure (cf. Figs. 1 to 14). In these
departure plots the B3LYP/cc-pVDZ calculations with the contribution of
hindered internal rotation evaluated from MP2/cc-pVTZ energies are
chosen as a reference. As shown in these figures, an uncertainty of ±1.5%
or less is achieved for the predictions. If only a threefold V3 coefficient is
taken into account, a heat capacity is obtained which is nearly up to 0.4%
higher (cf. the solid lines). For molecules possessing asymmetrical rotating
groups, a single Vg

3 term was estimated from regression analysis (cf. the last
column in Table V). If only such an ‘‘effective’’ potential term is taken into
account, the predictions move closer to the experimental data. But due
to the underlying assumptions, not too much importance should be
attached to this result. It shows, however, that good agreement may also
be obtained from one effective threefold term. As mentioned earlier, the

Table V. Potential Coefficients Vn Estimated from Relative Energy Differences in Table IV
(kcal ·mol −1)

Molecule Method V1 V2 V3 V4 V5 V3 a

CClF2–CHClF MP2/cc-pVTZ 0.736 −0.431 6.171 −0.216 0.147 6.290
B3LYP/cc-pVDZ 1.231 −0.598 4.573 −0.299 0.246 —

CClF2–CClF2 MP2/cc-pVTZ 0.783 −0.298 6.770 −0.149 0.157 8.797
B3LYP/cc-pVDZ 1.456 −0.604 4.753 −0.302 0.291 —

CClF2–CCl2F MP2/cc-pVTZ −0.739 0.591 8.797 0.296 −0.148 7.017
B3LYP/cc-pVDZ −1.128 0.902 6.793 0.451 −0.226 —

a Only a threefold symmetrical coefficient was considered and estimated from regression of the
relative energies.
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Fig. 1. Experimental and predicted heat capacity of C 2H 6. Reference line:
heat capacity calculated from B3LYP/cc-pVDZ//MP2/cc-pVTZ.

B3LYP/cc-pVDZ method leads to relative energy differences of the
isomers, which are smaller than those from single-point MP2/cc-pVTZ
calculations. If the contribution of hindered internal rotation is evaluated
with B3LYP/cc-pVDZ energies, the results shown as dashed lines in the
figures are obtained. It is observed that these energies lead to heat capaci-
ties which are up to nearly 1% higher than the reference data. Obviously,
the B3LYP/cc-pVDZ method is well suited for the prediction of vibratio-
nal frequencies, whereas MP2/cc-pVTZ is more adequate for the predic-
tion of energy differences in hindered internal rotation. This empirical
result is not inconsistent within the theoretical basis of the calculations,
because for the calculation of vibrational frequencies, the second partial
derivatives of the potential energy at equilibrium with respect to coordi-
nates of the nuclei are required, i.e., the shape of the potential is the deci-
sive factor, and not the energy value itself as for internal rotation.

4. CONCLUSION

We performed B3LYP/cc-pVDZ calculations for all fluorochloro-
derivatives of methane and ethane. From the results we obtained, we
conclude that the B3LYP/cc-pVDZ method is well suited for the predic-
tion of vibrational frequencies and their contribution to the ideal gas state
functions. For satisfactory prediction of the ethane-like molecules, it is
evident that additional MP2/cc-pVTZ calculations have to be performed
to get accurate coefficients of the potential energy of hindered internal
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Fig. 2. Experimental and predicted heat capacity of CH 3–CHF2 (R152a).
Reference line: heat capacity calculated from B3LYP/cc-pVDZ//MP2/cc-
pVTZ.

Fig. 3. Experimental and predicted heat capacity of CH 3–CF3 (R143a).
Reference line: heat capacity calculated from B3LYP/cc-pVDZ//MP2/cc-
pVTZ.
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Fig. 4. Experimental and predicted heat capacity of CF3–CH 2F (R134a).
Reference line: heat capacity calculated from B3LYP/cc-pVDZ//MP2/cc-
pVTZ.

Fig. 5. Experimental and predicted heat capacity of CF3–CHF2 (R125).
Reference line: heat capacity calculated from B3LYP/cc-pVDZ//MP2/cc-
pVTZ.
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Fig. 6. Experimental and predicted heat capacity of CF3–CClF2 (R115).
Reference line: heat capacity calculated from B3LYP/cc-pVDZ//MP2/cc-
pVTZ.

Fig. 7. Experimental and predicted heat capacity of CF3–CHCl2 (R123).
Reference line: heat capacity calculated from B3LYP/cc-pVDZ//MP2/cc-
pVTZ.
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Fig. 8. Experimental and predicted heat capacity of CF3–CH 2Cl (R133a).
Reference line: heat capacity calculated from B3LYP/cc-pVDZ//MP2/cc-
pVTZ.

Fig. 9. Experimental and predicted heat capacity of CF3–CHClF (R124).
Reference line: heat capacity calculated from B3LYP/cc-pVDZ//MP2/cc-
pVTZ.
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Fig. 10. Experimental and predicted heat capacity of CH 3–CCl2F
(R141b). Reference line: heat capacity calculated from B3LYP/cc-
pVDZ//MP2/cc-pVTZ.

Fig. 11. Experimental and predicted heat capacity of CH 3–CClF2 (R142b).
Reference line: heat capacity calculated from B3LYP/cc-pVDZ//MP2/cc-
pVTZ).
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Fig. 12. Experimental and predicted heat capacity of CClF2–CCl2F (R113).
Reference line: heat capacity calculated from B3LYP/cc-pVDZ//MP2/cc-
pVTZ.

Fig. 13. Experimental and predicted heat capacity of CClF2–CClF2 (R114).
Reference line: heat capacity calculated from B3LYP/cc-pVDZ//MP2/cc-
pVTZ.
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Fig. 14. Experimental and predicted heat capacity of CClF2–CHClF
(R123a). Reference line: heat capacity calculated from B3LYP/cc-
pVDZ//MP2/cc-pVTZ.

rotation. Finally, reliable experimental heat capacity data reveal that, for
the methane-like molecules considered in the previous paper [2] and the
derivatives of ethane presented here, an uncertainty of ±1.5% or less is
achieved. Therefore, the combination of quantum mechanics and statistical
thermodynamics provides a rational and reliable method for prediction of
ideal gas heat capacities.
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NOMENCLATURE

cp Molar heat capacity at constant pressure
c Contribution to heat capacity
I Moment of inertia
N Number of atoms in a molecule
R Molar gas constant
T Thermodynamic temperature
Vir Potential energy of internal rotation
Vn nth coefficient of the series expansion
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Greek Symbols

j Torsional angle
vi Normal vibrational frequency (anharmonic)

Subscripts

irot Internal rotation
red Reduced
rot External rotation
tr Translation
vib Vibration

Superscripts

o Experimental at zero pressure
ig Ideal gas
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